
©
 2

00
9

at
se

c
in

fo
rm

at
io

n
se

cu
rit

y

- atsec public -

Apostol Vassilev,
Principal Consultant
September 23,2009.

Taking White Hats to the Laundry: How to
Strengthen Testing in Common Criteria

søndag 30. august 2009

©
 2

00
9

at
se

c
in

fo
rm

at
io

n
se

cu
rit

y

- atsec public -

Product Testing in Common Criteria

søndag 30. august 2009

©
 2

00
9

at
se

c
in

fo
rm

at
io

n
se

cu
rit

y

- atsec public -

Product Testing in Common Criteria

• Functional and penetration testing are
important tools for gaining assurance in the
evaluated product

søndag 30. august 2009

©
 2

00
9

at
se

c
in

fo
rm

at
io

n
se

cu
rit

y

- atsec public -

Product Testing in Common Criteria

• Functional and penetration testing are
important tools for gaining assurance in the
evaluated product

søndag 30. august 2009

©
 2

00
9

at
se

c
in

fo
rm

at
io

n
se

cu
rit

y

- atsec public -

Product Testing in Common Criteria

• Functional and penetration testing are
important tools for gaining assurance in the
evaluated product

søndag 30. august 2009

©
 2

00
9

at
se

c
in

fo
rm

at
io

n
se

cu
rit

y

- atsec public -

Product Testing in Common Criteria

• Functional and penetration testing are
important tools for gaining assurance in the
evaluated product

• Problem: the testing methodology defined in
CC is underspecified
results are difficult to reproduce
affects the public’s perception of the value of

evaluations

søndag 30. august 2009

©
 2

00
9

at
se

c
in

fo
rm

at
io

n
se

cu
rit

y

- atsec public -

Outline

• Introduction
 Current situation with product testing in CC
 Recent advancements in testing and their potential use in CC

• Proposal
 Modular assurance packages based on interface-specific attacks
 Benefits from using such packages

• Conclusions and future work

søndag 30. august 2009

©
 2

00
9

at
se

c
in

fo
rm

at
io

n
se

cu
rit

y

- atsec public -

Product testing according to CEM

søndag 30. august 2009

©
 2

00
9

at
se

c
in

fo
rm

at
io

n
se

cu
rit

y

- atsec public -

Product testing according to CEM

• The goal is to test the behavior of TOE
 as described in ST and as specified in the evaluation evidence
 the focus is on testing the security functionality, defined by the SFRs

søndag 30. august 2009

©
 2

00
9

at
se

c
in

fo
rm

at
io

n
se

cu
rit

y

- atsec public -

Product testing according to CEM

• The goal is to test the behavior of TOE
 as described in ST and as specified in the evaluation evidence
 the focus is on testing the security functionality, defined by the SFRs

• Evaluators test TSF by
 devising own test cases
 re-running a subset of developer’s test cases

søndag 30. august 2009

©
 2

00
9

at
se

c
in

fo
rm

at
io

n
se

cu
rit

y

- atsec public -

Product testing according to CEM

• The goal is to test the behavior of TOE
 as described in ST and as specified in the evaluation evidence
 the focus is on testing the security functionality, defined by the SFRs

• Evaluators test TSF by
 devising own test cases
 re-running a subset of developer’s test cases

søndag 30. august 2009

©
 2

00
9

at
se

c
in

fo
rm

at
io

n
se

cu
rit

y

- atsec public -

Product testing according to CEM

• The goal is to test the behavior of TOE
 as described in ST and as specified in the evaluation evidence
 the focus is on testing the security functionality, defined by the SFRs

• Evaluators test TSF by
 devising own test cases
 re-running a subset of developer’s test cases

• CEM suggests alternate approaches only when it is impractical
to test directly specific functionality
 such as source code analysis

søndag 30. august 2009

©
 2

00
9

at
se

c
in

fo
rm

at
io

n
se

cu
rit

y

- atsec public -

Limitations of testing defined in CEM

søndag 30. august 2009

©
 2

00
9

at
se

c
in

fo
rm

at
io

n
se

cu
rit

y

- atsec public -

Limitations of testing defined in CEM

• Traditionally, emphasis is given to “functional testing” of
security features
 deterministic positive and negative testing prevails in the software industry

 accepted by CEM and prioritized by relevance to SFRs:
 SFR-enforcing TSFIs are covered
 SFR-supporting or SFR-non-interfering TSFIs are largely ignored

søndag 30. august 2009

©
 2

00
9

at
se

c
in

fo
rm

at
io

n
se

cu
rit

y

- atsec public -

Limitations of testing defined in CEM

• Traditionally, emphasis is given to “functional testing” of
security features
 deterministic positive and negative testing prevails in the software industry

 accepted by CEM and prioritized by relevance to SFRs:
 SFR-enforcing TSFIs are covered
 SFR-supporting or SFR-non-interfering TSFIs are largely ignored

• The deterministic functional testing is good for confirming the
overall security architecture and design of the product.

søndag 30. august 2009

©
 2

00
9

at
se

c
in

fo
rm

at
io

n
se

cu
rit

y

- atsec public -

Limitations of testing defined in CEM

søndag 30. august 2009

©
 2

00
9

at
se

c
in

fo
rm

at
io

n
se

cu
rit

y

- atsec public -

Limitations of testing defined in CEM

• Recent advances in testing technology have shown that
deterministic functional testing is not sufficient for gaining
assurance in the security features of a product
 hackers pioneered random fuzzing of interfaces intended to penetrate

them

 fuzz testing is becoming more and more accepted by major software
vendors and incorporated in product development

 introduces the concept of probabilistic assurance

søndag 30. august 2009

©
 2

00
9

at
se

c
in

fo
rm

at
io

n
se

cu
rit

y

- atsec public -

Fuzz Testing

søndag 30. august 2009

©
 2

00
9

at
se

c
in

fo
rm

at
io

n
se

cu
rit

y

- atsec public -

Fuzz Testing

• Fuzz testing has evolved as black box testing to
uncover hidden vulnerabilities and implementation
bugs

søndag 30. august 2009

©
 2

00
9

at
se

c
in

fo
rm

at
io

n
se

cu
rit

y

- atsec public -

Fuzz Testing

• Fuzz testing has evolved as black box testing to
uncover hidden vulnerabilities and implementation
bugs

• Fuzz testing of a given interface (API, protocol, etc)
can be

 Brute-force
 invoke the interface with a completely random input data

 Adaptive
 use semi-random/semi-malformed input data

søndag 30. august 2009

©
 2

00
9

at
se

c
in

fo
rm

at
io

n
se

cu
rit

y

- atsec public -

Fuzz Testing

• Fuzz testing has evolved as black box testing to
uncover hidden vulnerabilities and implementation
bugs

• Fuzz testing of a given interface (API, protocol, etc)
can be

 Brute-force
 invoke the interface with a completely random input data

 Adaptive
 use semi-random/semi-malformed input data

• Open questions:
 What is the proper cost/benefit ratio for this type of testing?
 Can we map Fuzz testing results to EAL levels?

søndag 30. august 2009

©
 2

00
9

at
se

c
in

fo
rm

at
io

n
se

cu
rit

y

- atsec public -

Fuzz testing

søndag 30. august 2009

©
 2

00
9

at
se

c
in

fo
rm

at
io

n
se

cu
rit

y

- atsec public -

Fuzz testing

• Fuzz testing has been used successfully to
uncover implementation bugs responsible for
 system crashes
 memory leaks
 unhandled exceptions
 buffer overflows
 dangling threads
 dangling pointers

• Most of these are code quality indicators, but
they have direct security implications

søndag 30. august 2009

©
 2

00
9

at
se

c
in

fo
rm

at
io

n
se

cu
rit

y

- atsec public -

Fuzz testing

• Fuzz testing has been used successfully to
uncover implementation bugs responsible for
 system crashes
 memory leaks
 unhandled exceptions
 buffer overflows
 dangling threads
 dangling pointers

• Most of these are code quality indicators, but
they have direct security implications

søndag 30. august 2009

©
 2

00
9

at
se

c
in

fo
rm

at
io

n
se

cu
rit

y

- atsec public -

Fuzz testing

• Fuzz testing has been used successfully to
uncover implementation bugs responsible for
 system crashes
 memory leaks
 unhandled exceptions
 buffer overflows
 dangling threads
 dangling pointers

• Most of these are code quality indicators, but
they have direct security implications

søndag 30. august 2009

©
 2

00
9

at
se

c
in

fo
rm

at
io

n
se

cu
rit

y

- atsec public -

Fuzz Testing

søndag 30. august 2009

©
 2

00
9

at
se

c
in

fo
rm

at
io

n
se

cu
rit

y

- atsec public -

Fuzz Testing

• Open questions:
 What is the proper cost/benefit ratio for this type of testing?

 Hackers, developers have different perspectives
 Where do evaluators stand?

 Can we incorporate this type of testing in CC?
 Can we map Fuzz testing results to EAL levels?

søndag 30. august 2009

©
 2

00
9

at
se

c
in

fo
rm

at
io

n
se

cu
rit

y

- atsec public -

Limitations of testing defined in CEM

søndag 30. august 2009

©
 2

00
9

at
se

c
in

fo
rm

at
io

n
se

cu
rit

y

- atsec public -

Limitations of testing defined in CEM

• Observation:
 TSFIs cannot be reliably prioritized for CC testing as

 SFR-enforcing
 SFR-supporting
 SFR-non-interfering

 This issue is particularly relevant for low (<4) EAL evaluations

søndag 30. august 2009

©
 2

00
9

at
se

c
in

fo
rm

at
io

n
se

cu
rit

y

- atsec public -

Limitations of testing defined in CEM

• Observation:
 TSFIs cannot be reliably prioritized for CC testing as

 SFR-enforcing
 SFR-supporting
 SFR-non-interfering

 This issue is particularly relevant for low (<4) EAL evaluations

• Observation:
 Any TOE interface exposed to attackers may be security

relevant
 Hence, it should be tested thoroughly

søndag 30. august 2009

©
 2

00
9

at
se

c
in

fo
rm

at
io

n
se

cu
rit

y

- atsec public -

Limitations of testing defined in CEM

• Observation:
 TSFIs cannot be reliably prioritized for CC testing as

 SFR-enforcing
 SFR-supporting
 SFR-non-interfering

 This issue is particularly relevant for low (<4) EAL evaluations

• Observation:
 Any TOE interface exposed to attackers may be security

relevant
 Hence, it should be tested thoroughly

• Observation:
 Fuzzing and interface-specific tests provide a good framework

for this

søndag 30. august 2009

©
 2

00
9

at
se

c
in

fo
rm

at
io

n
se

cu
rit

y

- atsec public -

Interface-specific testing

søndag 30. august 2009

©
 2

00
9

at
se

c
in

fo
rm

at
io

n
se

cu
rit

y

- atsec public -

Interface-specific testing

• Why Interface-specific testing?
 Interface-specific classes of attacks have emerged

 e.g., XSS for Web interfaces

 As software technology standardizes, so do the attacks
 Just recently hackers pulled off a major break-in using a classic SQL

injection
Heartland Payment Systems 2009 breach compromised 130+ Mil accounts

data

søndag 30. august 2009

©
 2

00
9

at
se

c
in

fo
rm

at
io

n
se

cu
rit

y

- atsec public -

Interface-specific testing

• Why Interface-specific testing?
 Interface-specific classes of attacks have emerged

 e.g., XSS for Web interfaces

 As software technology standardizes, so do the attacks
 Just recently hackers pulled off a major break-in using a classic SQL

injection
Heartland Payment Systems 2009 breach compromised 130+ Mil accounts

data

• Well-known classes of interface-specific
attacks lead to standard frameworks of tests
that are

 naturally adapted to the type of interface

 allow for state-of-the-art coupling with fuzzing for testing
multilayered interfaces/protocols

søndag 30. august 2009

©
 2

00
9

at
se

c
in

fo
rm

at
io

n
se

cu
rit

y

- atsec public -

Example: Well-known attacks/testing
techniques for Web Interfaces

 Cross-Site Scripting (reflected, Stored, DOM based XSS)
 Session Hijacking (session fixation, session side-jacking)
 Cross-site Request Forgery (also known as session-riding)
 Path Reversal
 Code Injection (PHP, HTML, SQL Injection)
 Command injection (LDAP, XPath, XSLT, HTML, XML, OS)
 File inclusions
 Use of poor encoding practice (base 64)/ Insecure cryptographic

storage
 Insecure direct object reference
 Information Leakage and Improper Error Handling

søndag 30. august 2009

©
 2

00
9

at
se

c
in

fo
rm

at
io

n
se

cu
rit

y

- atsec public -

Combining Fuzzing w/ Well-Known Tests
for Discovering Input-Based
Vulnerabilities

 (Pseudo-)Randomly
choose an input from
the entire input
space

 Invoke the
application with that
input

 Observe the
resulting output

 Look for 'odd'
behavior

 Exploit odd behavior

 Example: HTTP Header Fuzzing
7K:>6]"=:&X<ZE`,`)7?:0=/'53#.DMO:/_2`RZN6QB9

GET M?40G);>@!5#/>L5P_`+\@V3WB+_2_ HTTP/1.0

GET http://www.foobar.com/M?40G);>@!5#/>L5P
HTTP/1.0

GET http://www.foobar.com/so6gyhsiwgic.html
HTTP/1.0

GET http://www.foobar.com/so6gyhsiwgic.pl HTTP/
1.0

GET http://www.foobar.com/so6gyhsiwgic.ado
HTTP/1.0

GET http://www.foobar.com/so6gyhsiwgic.jsp HTTP/
1.0

GET http://www.foobar.com/so6gyhsiwgic.hs HTTP/

søndag 30. august 2009

©
 2

00
9

at
se

c
in

fo
rm

at
io

n
se

cu
rit

y

- atsec public -

Our Goal

• Promote the development of an interface-
based testing methodology for CC that

 complements the general interface-independent testing
methodology of CEM

 maps easily to EAL levels

 improves reproducibility of test results

 enhances the value of the evaluation

søndag 30. august 2009

©
 2

00
9

at
se

c
in

fo
rm

at
io

n
se

cu
rit

y

- atsec public -

Approaches to Adopting Interface-Based
Testing in CC
• Develop testing-related assurance packages

 combining fuzzing with interface-specific knowledge-based tests

• Modular assurance packages tailored to
specific product types
 e.g., Web product test package

 Cross-Site Scripting (reflected, Stored, DOM based XSS)
 Session Hijacking (session fixation, session side-jacking)
 Cross-site Request Forgery (also known as session-riding)
 Path Reversal
 Code Injection (PHP, HTML, SQL Injection)
 Command injection (LDAP, XPath, XSLT, HTML, XML, OS)
 File inclusions
 Use of poor encoding practice (base 64)/ Insecure cryptographic storage
 Insecure direct object reference
 Information Leakage and Improper Error Handling

Fuzzing on
interface
parameters

søndag 30. august 2009

©
 2

00
9

at
se

c
in

fo
rm

at
io

n
se

cu
rit

y

- atsec public -

Modular assurance packages and EAL

Some Interfaces Tested by Some Interface-Specific Tests With Some Fuzzing

Most Interfaces Tested by Some Interface-Specific Tests With Some Fuzzing

Most Interfaces Tested by Most Interface-Specific Tests With Some Fuzzing

Most Interfaces Tested by Most Interface-Specific Tests With More Fuzzing

All Interfaces Tested by Most Interface-Specific Tests With More Fuzzing

All Interfaces Tested by All Interface-Specific Tests With Most Fuzzing

EAL low

EAL high

søndag 30. august 2009

©
 2

00
9

at
se

c
in

fo
rm

at
io

n
se

cu
rit

y

- atsec public -

Benefits from modular test assurance
packages

søndag 30. august 2009

©
 2

00
9

at
se

c
in

fo
rm

at
io

n
se

cu
rit

y

- atsec public -

Benefits from modular test assurance
packages
• For developers

 Adopting state-state-of-the-art tests early in development
cycle saves expensive bug fixes during product evaluation

 Improves the quality of the product and helps avoid
embarrassing post-release “discoveries”

søndag 30. august 2009

©
 2

00
9

at
se

c
in

fo
rm

at
io

n
se

cu
rit

y

- atsec public -

Benefits from modular test assurance
packages
• For developers

 Adopting state-state-of-the-art tests early in development
cycle saves expensive bug fixes during product evaluation

 Improves the quality of the product and helps avoid
embarrassing post-release “discoveries”

• For evaluators
 Improves the likelihood of the discovery of critical security

problems by shifting the focus for known attacks from AVA to
ETE

 Improves the repeatability of evaluations and addresses a
weakness in the standard

søndag 30. august 2009

©
 2

00
9

at
se

c
in

fo
rm

at
io

n
se

cu
rit

y

- atsec public -

Benefits from modular test assurance
packages
• For developers

 Adopting state-state-of-the-art tests early in development
cycle saves expensive bug fixes during product evaluation

 Improves the quality of the product and helps avoid
embarrassing post-release “discoveries”

• For evaluators
 Improves the likelihood of the discovery of critical security

problems by shifting the focus for known attacks from AVA to
ETE

 Improves the repeatability of evaluations and addresses a
weakness in the standard

• For consumers
 Increases the security assurances provided by the product
 Increases the value of certification

søndag 30. august 2009

©
 2

00
9

at
se

c
in

fo
rm

at
io

n
se

cu
rit

y

- atsec public -

Conclusions

søndag 30. august 2009

©
 2

00
9

at
se

c
in

fo
rm

at
io

n
se

cu
rit

y

- atsec public -

Conclusions

• Rigorously defined testing modules lead to
state-of-the-art testing techniques

søndag 30. august 2009

©
 2

00
9

at
se

c
in

fo
rm

at
io

n
se

cu
rit

y

- atsec public -

Conclusions

• Rigorously defined testing modules lead to
state-of-the-art testing techniques

søndag 30. august 2009

©
 2

00
9

at
se

c
in

fo
rm

at
io

n
se

cu
rit

y

- atsec public -

Conclusions

• Rigorously defined testing modules lead to
state-of-the-art testing techniques

• Evaluators can reliably identify more security
flaws and systematically increase the rigor of
CC testing

søndag 30. august 2009

©
 2

00
9

at
se

c
in

fo
rm

at
io

n
se

cu
rit

y

- atsec public -

Conclusions

• Rigorously defined testing modules lead to
state-of-the-art testing techniques

• Evaluators can reliably identify more security
flaws and systematically increase the rigor of
CC testing

søndag 30. august 2009

©
 2

00
9

at
se

c
in

fo
rm

at
io

n
se

cu
rit

y

- atsec public -

Conclusions

• Rigorously defined testing modules lead to
state-of-the-art testing techniques

• Evaluators can reliably identify more security
flaws and systematically increase the rigor of
CC testing

• The definition of modular test packages can
be formalized to integrate in CC

søndag 30. august 2009

