Taking White Hats to the Laundry: How to
Strengthen Testing in Common Criteria

Apostol Vassileyv,
Principal Consultant

September 23,20009.

:@sec=

rity

ation secu

m

© 2009 atsec infor

sondag 30. august 2009

Product TeMg

(secCc=

N PENTRIOON MOy

- atsec public -

© 2009 atsec information security

sondag 30. august 2009

s~

Product Testing in Cc

e Functional and pen
important tools for
evaluated product

etration testing are
gaining assurance in the

:@sec=

- atsec public -

rity

ation secu

m

© 2009 atsec infor

sondag 30. august 2009

s~

Product Testing in Cc

e Functional and pen
important tools for
evaluated product

etration testing are
gaining assurance in the

:@sec=

- atsec public -

rity

ation secu

m

© 2009 atsec infor

sondag 30. august 2009

s~

Product Testing in Cc

e Functional and pen
important tools for
evaluated product

etration testing are
gaining assurance in the

:@sec=

- atsec public -

rity

ation secu

m

© 2009 atsec infor

sondag 30. august 2009

Product Testing in Common Criteria:

e Functional and penetration testing are
important tools for gaining assurance in the
evaluated product

e Problem: the testing methodology defined in
CC is underspecified .
»results are difficult to reproduce

»affects the public’s perception of the value of
evaluations

rmation secur

© 2009 atsec info

:@sec= .

sondag 30. august 2009

Outline

e Introduction

» Current situation with product testing in CC
> Recent advancements in testing and their potential use in CC

e Proposal
» Modular assurance packages based on interface-specific attacks
» Benefits from using such packages

e Conclusions and future work

© 2009 atsec information security

sondag 30. august 2009

Product te sﬁq‘g

«.*Z.Am "

(secCc=

N PENTRIOO MOy

- atsec public -

© 2009 atsec information security

sondag 30. august 2009

’u

”.—-

- N7
Product testlng acco

« The goal is to test the behavior of TOE
> as described in ST and as specified in the evaluation evidence
> the focus is on testing the security functionality, defined by the SFRs

© 2009 atsec information security

sondag 30. august 2009

=~

\'__'3. -y . \’.‘/y ‘ B o
Product testing accordit
oy

« The goal is to test the behavior of TOE
> as described in ST and as specified in the evaluation evidence
> the focus is on testing the security functionality, defined by the SFRs

« Evaluators test TSF by
> devising own test cases
» re-running a subset of developer’s test cases

:@sec=

© 2009 atsec information security

sondag 30. august 2009

=~

\'__'3. -y . \’.‘/y ‘ B o
Product testing accordit
oy

« The goal is to test the behavior of TOE
> as described in ST and as specified in the evaluation evidence
> the focus is on testing the security functionality, defined by the SFRs

« Evaluators test TSF by
> devising own test cases
» re-running a subset of developer’s test cases

:@sec=

© 2009 atsec information security

sondag 30. august 2009

-~ X

Product testing accorc}ingmw

LI

The goal is to test the behavior of TOE
> as described in ST and as specified in the evaluation evidence
> the focus is on testing the security functionality, defined by the SFRs

Evaluators test TSF by
> devising own test cases
» re-running a subset of developer’s test cases

CEM suggests alternate approaches only when it is impractical
to test directly specific functionality
> such as source code analysis

:@sec=

© 2009 atsec information security

sondag 30. august 2009

leltatlons\f\te

—

X

S
h

str-

(@secCc=

N RNTROON MOy VD

- atsec public -

© 2009 atsec information security

sondag 30. august 2009

?..,-:_25" ‘

Limitations of testi

(S
h V2

\

« Traditionally, emphasis is given to “functional testing” of
security features
» deterministic positive and negative testing prevails in the software industry

> accepted by CEM and prioritized by relevance to SFRs:
» SFR-enforcing TSFls are covered
» SFR-supporting or SFR-non-interfering TSFls are largely ignored

:@sec=

© 2009 atsec information security

sondag 30. august 2009

)

-
8

Limitations of testlng d

« Traditionally, emphasis is given to “functional testing” of
security features
» deterministic positive and negative testing prevails in the software industry

> accepted by CEM and prioritized by relevance to SFRs:
» SFR-enforcing TSFls are covered
» SFR-supporting or SFR-non-interfering TSFls are largely ignored

 The deterministic functional testing is good for confirming the
overall security architecture and design of the product.

:@sec= TS

© 2009 atsec information security

sondag 30. august 2009

leltatlons\f\te

—

X

S
h

str-

(@secCc=

N RNTROON MOy VD

- atsec public -

© 2009 atsec information security

sondag 30. august 2009

Limitations of testlng

« Recent advances in testing technology have shown that
deterministic functional testing is not sufficient for gaining
assurance in the security features of a product

» hackers pioneered random fuzzing of interfaces intended to penetrate
them

» fuzz testing is becoming more and more accepted by major software
vendors and incorporated in product development

> introduces the concept of probabilistic assurance

:@sec= TS

© 2009 atsec information security

sondag 30. august 2009

5 sec: - atsec public -

e RNTRIOON MOWTY Srovedor

© 2009 atsec information security

sondag 30. august 2009

Fuzz Testlﬁg

* Fuzz testing has evolved as black box testing to
uncover hidden vulnerabilities and implementation

bugs

© 2009 atsec information security

sondag 30. august 2009

Fuzz Testihg

 Fuzz testing has evolved as black box testing to
uncover hidden vulnerabilities and implementation
bugs

* Fuzz testing of a given interface (API, protocol, etc)

can be

» Brute-force
» invoke the interface with a completely random input data

> Adaptive

» use semi-random/semi-malformed input data

:@sec=

© 2009 atsec information security

sondag 30. august 2009

TR .' 'm

Fuzz Testing E \ 'J,a}/

 Fuzz testing has evolved as black box testing to
uncover hidden vulnerabilities and implementation
bugs

* Fuzz testing of a given interface (API, protocol, etc)

can be

» Brute-force
» invoke the interface with a completely random input data

> Adaptive
» use semi-random/semi-malformed input data
e Open questions:
» What is the proper cost/benefit ratio for this type of testing?
» Can we map Fuzz testing results to EAL levels?

:@sec= TS

© 2009 atsec information security

sondag 30. august 2009

5 sec: - atsec public -

e RNTRIOON MOWTY Srovedor

© 2009 atsec information security

sondag 30. august 2009

N ; 'yQ

Fuzz testing E BoL \,&\V J,&’/

* Fuzz testing has been used successfully to
uncover implementation bugs responsible for

> system crashes

» memory leaks

» unhandled exceptions
> buffer overflows

» dangling threads

» dangling pointers

- Most of these are code quality indicators, but
they have direct security implications

:@sec= TS

rity

ation secu

m

© 2009 atsec infor

sondag 30. august 2009

N ; 'yQ

Fuzz testing E BoL \,&\V J,&’/

* Fuzz testing has been used successfully to
uncover implementation bugs responsible for

> system crashes

» memory leaks

» unhandled exceptions
> buffer overflows

» dangling threads

» dangling pointers

- Most of these are code quality indicators, but
they have direct security implications

:@sec= TS

rity

ation secu

m

© 2009 atsec infor

sondag 30. august 2009

N ; 'yQ

Fuzz testing E BoL \,&\V J,&’/

* Fuzz testing has been used successfully to
uncover implementation bugs responsible for

> system crashes

» memory leaks

» unhandled exceptions
> buffer overflows

» dangling threads

» dangling pointers

- Most of these are code quality indicators, but
they have direct security implications

:@sec= TS

rity

ation secu

m

© 2009 atsec infor

sondag 30. august 2009

5 sec: - atsec public -

e RNTRIOON MOWTY Srovedor

© 2009 atsec information security

sondag 30. august 2009

‘‘‘‘‘

- ‘,\
NN
*

.
Fuzz Testing

e Open questions:

» What is the proper cost/benefit ratio for this type of testing?
» Hackers, developers have different perspectives
» Where do evaluators stand?

» Can we incorporate this type of testing in CC?
» Can we map Fuzz testing results to EAL levels?

E@SEC: - atsec public -

© 2009 atsec information security

sondag 30. august 2009

leltatlons\f\te

—

X

S
h

str-

(@secCc=

N RNTROON MOy VD

- atsec public -

© 2009 atsec information security

sondag 30. august 2009

w

\’/

Limitations of testing

g

 Observation:

» TSFls cannot be reliably prioritized for CC testing as
» SFR-enforcing
» SFR-supporting
» SFR-non-interfering

» This issue is particularly relevant for low (<4) EAL evaluations

© 2009 atsec information security

sondag 30. august 2009

Limitations of testmg%eﬁn

 Observation:

» TSFls cannot be reliably prioritized for CC testing as
» SFR-enforcing
» SFR-supporting
» SFR-non-interfering

» This issue is particularly relevant for low (<4) EAL evaluations

* Observation:

» Any TOE interface exposed to attackers may be security
relevant

> Hence, it should be tested thoroughly

:@sec=

© 2009 atsec information security

sondag 30. august 2009

Limitations of testmg

Observation:

» TSFls cannot be reliably prioritized for CC testing as
» SFR-enforcing
» SFR-supporting
» SFR-non-interfering

» This issue is particularly relevant for low (<4) EAL evaluations

Observation:

» Any TOE interface exposed to attackers may be security
relevant

> Hence, it should be tested thoroughly

Observation:

» Fuzzing and interface-specific tests provide a good framework
for this

:@sec=

© 2009 atsec information security

sondag 30. august 2009

-: SEC: - atsec public -

N VENTRIOO" MO Ty SNOvESor

© 2009 atsec information security

sondag 30. august 2009

Why Interface-specific testing?

> Interface-specific classes of attacks have emerged
> e.g., XSS for Web interfaces

> As software technology standardizes, so do the attacks
> Just recently hackers pulled off a major break-in using a classic SQL

injection
Heartland Payment Systems 2009 breach compromised 130+ Mil accounts
data
f@SEC: - atsec public -

© 2009 atsec information security

sondag 30. august 2009

Interface-specific testing 1

A gy |
> Sl

 Why Interface-specific testing?

> Interface-specific classes of attacks have emerged
> e.g., XSS for Web interfaces

> As software technology standardizes, so do the attacks

> Just recently hackers pulled off a major break-in using a classic SQL
injection

Heartland Payment Systems 2009 breach compromised 130+ Mil accounts
data

« Well-known classes of interface-specific
attacks lead to standard frameworks of tests

that are
» naturally adapted to the type of interface

:—@SEG-TGW:for state-of-the-art couplingwith fuzzing for testing
multilayered interfaces/protocols

rity

ation secu

m

© 2009 atsec infor

sondag 30. august 2009

Example: Well-known :attaékzs;ﬁ:
techniques for Web Interfaces ™

Wy

v
S

=] '.‘33‘.’ D

. N\ \ /’
. I g “w ’//'
> AP “."/ //
v
N
i

YV VYV VYV VYV YV

Y VYV

Cross-Site Scripting (reflected, Stored, DOM based XSS)
Session Hijacking (session fixation, session side-jacking)
Cross-site Request Forgery (also known as session-riding)
Path Reversal

Code Injection (PHP, HTML, SQL Injection)

Command injection (LDAP, XPath, XSLT, HTML, XML, OS)
File inclusions

Use of poor encoding practice (base 64)/ Insecure cryptographic
storage

Insecure direct object reference
Information Leakage and Improper Error Handling

:@sec= .

© 2009 atsec information security

sondag 30. august 2009

Combining.Fuzzing wj WeII—KnGWn Tests
for Discovering Input-Based \\/* ° dx

Vulnerabilities

'_‘,-4-'\.,

AT

» (Pseudo-)Randomly
choose an input from
the entire input
space

> Invoke the
application with that
input

» Observe the
resulting output

> Look for 'odd'
behavior

Example: HTTP Header Fuzzing
7K:>6]"=:&X<ZE",")72:0=/'53#.DMO:/_2 ' RZN6QB9

et

GET M?40QG);>@!5#/>L5P_" +\@V3WB+_2_HTTP/1.0

<

GET http://www.foobar.com/M?40G);>@!5#/>L5P

HTTP/1.0
gt

GET http://www.foobar.com/sob6gyhsiwgic.html
HTTP/1.0

GET http://www.foobar.com/so6gyhsiwgic.pl HTTP/
1.0

GET http://www.foobar.com/so6gyhsiwgic.ado
HTTP/1.0

GET http://www. fooba~.\-|_L/m/so6gth|wg|CJsp HTTP/
1.0

GET http://www.foobar.com/sobgyhsiwgic.hs HTTP/

;—@ggsaic_add behavior

- atsec public -

© 2009 atsec information security

sondag 30. august 2009

Our Goal

* Promote the development of an interface-
based testing methodology for CC that

» complements the general interface-independent testing
methodology of CEM

> maps easily to EAL levels
» improves reproducibility of test results

> enhances the value of the evaluation

:@sec=

rity

ation secu

m

© 2009 atsec infor

sondag 30. august 2009

Approaches to Adoptmg Int‘erf~

Testing

in CC

'YA

i@ 5{’;\,&ed

4" \\{

:
v aod

>

YV V.V V VYV V VYV VYV V¥V

<

Cross-Site Scripting (reflected, Stored, DOM based XSS) —
Session Hijacking (session fixation, session side-jacking)

Cross-site Request Forgery (also known as session-riding)

Path Reversal

Code Injection (PHP, HTML, SQL Injection)

Command injection (LDAP, XPath, XSLT, HTML, XML, OS)

File inclusions

Use of poor encoding practice (base 64)/ Insecure cryptographic storpg
Insecure direct object reference

Information Leakage and Improper Error Handling

e Develop testing-related assurance packages

» combining fuzzing with interface-specific knowledge-based tests

e Modular assurance packages tailored to

specific product types
> e.g., Web product test package

Fuzzing on

_ EEj interface

parameters

:@sec= e

ic -

© 2009 atsec information security

sondag 30. august 2009

?S T

Modular assurance package-

- ’\ Ll‘m’v -

EAL low

Some Interfaces Tested by Some Interface-Specific Tests With Some Fuzzing

Most Interfaces Tested by Some Interface-Specific Tests With Some Fuzzing

Most Interfaces Tested by Most Interface-Specific Tests With Some Fuzzing

Most Interfaces Tested by Most Interface-Specific Tests With More Fuzzing

All Interfaces Tested by Most Interface-Specific Tests With More Fuzzing

All Interfaces Tested by All Interface-Specific Tests With Most Fuzzing

EAL high

:@sec=

© 2009 atsec information security

sondag 30. august 2009

. 2 W
Benefits from modulal

packages

:@sec=

TRICON MOy

- atsec public -

© 2009 atsec information security

sondag 30. august 2009

Benefits from modu_dva,@:fes'
packages DR N

-L.’_ - -

e For developers

» Adopting state-state-of-the-art tests early in development
cycle saves expensive bug fixes during product evaluation

» Improves the quality of the product and helps avoid
embarrassing post-release “discoveries”

:@sec=

© 2009 atsec information security

sondag 30. august 2009

"v"f‘

q)

Benefits from modular tesf ass \a;nﬁue_\,
packages

=] "f,

e For developers

» Adopting state-state-of-the-art tests early in development
cycle saves expensive bug fixes during product evaluation

» Improves the quality of the product and helps avoid
embarrassing post-release “discoveries”

e For evaluators

» Improves the likelihood of the discovery of critical security
problems by shifting the focus for known attacks from AVA to

ETE

» Improves the repeatability of evaluations and addresses a
weakness in the standard

:@sec= .

© 2009 atsec information security

sondag 30. august 2009

.'_'~;, " ,;»A\\
(,

Benefits from modular test asse
packages N

A

e For developers

» Adopting state-state-of-the-art tests early in development
cycle saves expensive bug fixes during product evaluation

» Improves the quality of the product and helps avoid
embarrassing post-release “discoveries”

e For evaluators

» Improves the likelihood of the discovery of critical security
problems by shifting the focus for known attacks from AVA to

ETE

» Improves the repeatability of evaluations and addresses a
weakness in the standard

e For consumers
> Increases the security assurances provided by the product
> Increases the value of certification

:@sec= .

© 2009 atsec information security

sondag 30. august 2009

5 sec: - atsec public -

e RNTRIOON MOWTY Srovedor

© 2009 atsec information security

sondag 30. august 2009

Conclusions

« Rigorously defined testing modules lead to
state-of-the-art testing techniques

rity

ation secu

m

© 2009 atsec infor

sondag 30. august 2009

Conclusions

« Rigorously defined testing modules lead to
state-of-the-art testing techniques

rity

ation secu

m

© 2009 atsec infor

sondag 30. august 2009

Conclusions

» Rigorously defined testing modules lead to
state-of-the-art testing techniques

« Evaluators can reliably identify more security
flaws and systematically increase the rigor of

CC testing

:@sec=

rity

ation secu

orm

© 2009 atsec inf

sondag 30. august 2009

Conclusions

» Rigorously defined testing modules lead to
state-of-the-art testing techniques

« Evaluators can reliably identify more security
flaws and systematically increase the rigor of

CC testing

:@sec=

rity

ation secu

orm

© 2009 atsec inf

sondag 30. august 2009

- S K =N
Conclusions o S Y ARW g
SN E) 2t e\ 7

A gy |

» Rigorously defined testing modules lead to
state-of-the-art testing techniques

Evaluators can reliably identify more security
flaws and systematically increase the rigor of

CC testing

The definition of modular test packages can
be formalized to integrate in CC

:@sec= .

© 2009 atsec

sondag 30. august 2009

