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NIST SP 800-56A and its Revisions 
 

by Swapneela Unkule, atsec CST Lab Manager 
 
NIST SP 800-56A provides recommendations for asymmetric-key-based key-agreement 
schemes based on the Diffie-Hellman (DH) and Menezes-Qu-Vanstone (MQV) algorithms and 
is intended to provide sufficient information for a vendor to implement secure key 
establishment using asymmetric algorithms in a FIPS validated module.  
 
SP 800-56A [56Ar1] was originally added to FIPS 140-2 [Annex D] on January 24, 2007. The 
second revision of SP 800-56A, denoted as [56Ar2], was published in May 2013, however it 
is only allowed to be claimed as a vendor-affirmed algorithm in a FIPS validated module, as 
there is no algorithm testing available to obtain CAVP certificates for this revision. There 
were several important differences between SP 800-56A Rev2 and SP 800-56A, the main one 
being that [56Ar2] permits the use of additional key derivation functions (KDF) documented 
in SP [800-135] and [SP 800-56C]. The third revision of SP 800-56A, denoted [56Ar3] was 
published in April 2018 and was added to FIPS 140-2 [Annex D] on June 10, 2019. There are 
several significant differences between SP 800-56A Rev3 and its predecessor, including the 
introduction of “safe-prime” groups and moving all of the key derivation functions to [SP 
800-56C]. 
For simplicity and in the interest of FIPS validation, the differences listed here are between 
the original validation of SP 800-56A [56Ar1], which is the only version for which the 
algorithm testing is available as of now, and Revision 3 of SP 800-56A [56Ar3], which will be 
the only revision considered approved past December 31st 2020. Both [56Ar1] and [56Ar3] 
provide the same categories of key-agreement schemes based on the number of ephemeral 
keys used by the two parties in the key-agreement process; category 1 is based on “two 
ephemeral key pairs”, category 2 is based on “one ephemeral key pair” and category 3 is 
based on “zero ephemeral key pairs” i.e. using all static key pairs. [56Ar3] however includes 
additional checks for error handling in these categories. Next we will look into the 
differences with respect to each step of the key agreement process, namely domain 
parameter generation and validation, key generation and validation, shared secret 
computation, key derivation and key confirmation along with the required assurances.   
We start with “Domain Parameter Generation”. The public and private key pairs used in the 
56A key-establishment process need to be generated with respect to a set of domain 
parameters based on either Finite Field Cryptography (FFC) or Elliptic Curve Cryptography 
(ECC), depending on the key-agreement scheme used.  
With respect to FFC domain parameter, the [56Ar1] only allowed the generation using a 
method specified in [FIPS 186-3] with a parameter-size set of either FA (public key size = 
1024 bits & private key size = 160 bits), FB (public key size = 2048 bit & private key size = 
224 bits) or FC (public key size = 2048 bit & private key size = 256 bits). [56Ar3] includes an 
additional class of domain parameter called safe-prime groups as approved for FFC based 
key agreement. The approved safe-prime groups are the ones employed by the “MODP” 
Diffie-Hellman groups used in the Internet Key Exchange protocol version 2 (IKE v2) listed in 
[RFC 3526] and the ones employed by the “ffdhe” Diffie-Hellman groups used in Transport 
Layer Security (TLS) protocol listed in [RFC 7919]. With respect to FIPS 186-type domain 
parameters, [56Ar3] removed the parameter-size set FA since it only provided a security 
strength of 80 bits and further clarified that FIPS 186-type domain parameters should only 
be used for backward compatibility with existing applications that cannot be upgraded to 
use the approved safe-prime groups.  
With respect to ECC based domain parameter, [56Ar1] mandated generation of parameters 
as specified in [ANS X9.62] or selected from the recommended elliptic curve domain 
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parameters specified in [FIPS 186-3], which included parameter-size set of EA (curve sizes 
160-223 bits), EB (curve sizes 224-255 bits), EC (curve sizes 256-383 bits), ED (curve sizes 
384-511 bits) and EE (curve sizes 512+ bits). [56Ar3] only allows the ECC domain 
parameters selected from [SP 800-186], which are listed in its Appendix D, removing 
references to X9.62. The curves listed in Appendix D do not include a range of parameter-
size sets. Instead it lists specific NIST-approved curves i.e. P curves with size 224, 256, 384, 
512 and K or B curves with sizes 233, 283, 409, 571, removing the curve sizes below 224 
bits that provided less than 112 bits of security strength. [56Ar3] also includes protocol-
specific elliptic curves as approved for ECC key-agreement, which are defined in [RFC 4492] 
and [SP 800-52] used in TLS, and the ones defined in [RFC 5903] used in IPsec with IKE v2.  
Please note that even though the SP 800-56A Rev3 was added to Annex D of FIPS 140-2 on 
June 10, 2019, both the safe-prime groups and the protocol-specific elliptical curves that are 
included in [56Ar3] were already allowed to be used in the FIPS-approved mode as per [140-
2 IG D.13] published in 2017.  
The next area to look at is “Domain Parameter Validation”. Secure key establishment 
depends on the arithmetic validity of the domain parameters used by the parties. Therefore, 
the 56A standard requires that each party shall have assurance of the validity of the domain 
parameters before they are used. The [56Ar1] specified three ways of achieving this 
assurance and required that at least one of them shall be used. First, a party generates the 
domain parameter itself, using approved method (as specified in above paragraph). Second, 
the party performs explicit domain parameter validation as per [FIPS 186-3] for FFC based 
parameters and as per [ANS X9.62] for ECC based parameters. Third, the party receives 
assurance from a trusted third party (for example, a certification authority (CA)). The 
[56Ar3] further refined the assurance methods for FFC based scheme by allowing the 
generation of domain parameters corresponding to approved safe-prime groups and by 
tightening the requirements for FIPS 186-type FFC domain parameters that mandate an 
explicit domain-parameter validation as specified in [SP 800-89] using the provided SEED 
and counter values.  
Now we come to the “Key Generation” stage which includes requirements for the generation 
of key pairs to be used in the key agreement process, along with methods for obtaining 
assurances that valid key pairs are used. [56Ar3] explicitly states that the generated key 
pairs shall be used only for key-agreement purposes. For both FFC and ECC key pair 
generation methods [56Ar1] refers to Appendix B of [FIPS 186-3] i.e. the key generation 
methods using either “Extra Random Bits” or “Testing Candidates” methods which are 
exactly the same as key generation used under Digital signature schemes for DSA and 
ECDSA algorithms respectively. Key generation methods listed in [56Ar3] differ in the sense 
that they include slight modifications to the methods listed in the [FIPS 186-4] standard. The 
input parameters for the FFC Key generation methods in [56Ar3] include two additional 
values, namely the maximum bit length of the private key to be generated (N) and the 
maximum-security strength to be supported by the key pair. The [56Ar1] key generation 
process internally derives these values based on the input domain parameters while [56Ar3] 
requires these to be explicitly provided as an input to the key generation process. In the 
actual key generation process, [56Ar3] includes steps for error checking of these additional 
input parameters and it replaces every use of domain parameter ‘q’ with the min (2N, q). 
[56Ar3] also differs in the length of the allowed range of sizes for the generated key pair. 
Specifically, the range for the private key has been changed from [1, q–1] to [1, min (2N − 1, 
q− 1)] and from [1, p–1] to [2, p – 2] for the public key. Here ‘p’ and ‘q’ are part of the input 
FFC domain parameter. Similarly, ECC Key generation methods in [56Ar3] include one 
additional input parameter, namely the maximum-security strength(s) to be supported by 
the key pair. The [56Ar1] key generation process internally derived this value based on the 
input domain parameters while the [56Ar3] requires this to be explicitly provided as input to 
the key generation process. In the actual key generation process, the [56Ar3] includes 
additional steps for error checking of the additional input parameter(s) and also requires the 
non-approved domain parameter to be rejected, returning an error. 
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Prior to or during a key-agreement process, the participants in the transaction need to 
obtain the assurances about the key pairs used. The required assurance differs based on 
which entity is performing the assurance (i.e. the owner or the recipient of the key) and the 
type of key used (i.e. ‘static’ used in multiple transactions vs. ‘ephemeral’ used in exactly 
one transaction).  
With respect to assurances required by the key pair owner, [56Ar1] only required assurances 
for possession of the private key and validity of the public key, whereas [56Ar3] mandates 
the owner to obtain assurances for correct generation of the key pair, possession of the key 
pair, assurance of the private as well as the public key validity, and assurance of pair-wise 
consistency using different methods listed in subsection of 5.6.2.1 of [56Ar3]. The assurance 
of the pair-wise consistency check can be obtained by the owner by either self-generating 
the static or ephemeral key using one of the approved methods listed in [56Ar3], or 
performing an explicit consistency check, which is only applicable for the static key pair 
generated by either the owner or a trusted third party. The vendors performing FIPS 
validation will be familiar with the term “pair-wise consistency”, which is the process to 
verify that the generated key pair have a correct mathematical relationship by performing 
successful signature generation and verification using the generated keys. FIPS 140-2 
requires this test to be performed on the asymmetric keys generated by the module. 
However, the assurance of pair-wise consistency specified in [56Ar3] is slightly different. 
Here the referenced assurance is obtained by re-computing the public key (from the private 
key and other domain parameters) and successfully comparing the computation result to 
the public key generated by the key generation process.   
With respect to the recipient of the public key, the required types of assurances i.e. public 
key validation and private key possession are more or less the same in revision 1 and 3 of 
56A, but the methods allowed for obtaining these assurances differ. For assurance of private 
key possession, [56Ar3] introduced an optional method for obtaining this assurance for 
ephemeral keys, which was absent in [56Ar1]. For assurance of the public key validation, 
one of the allowed methods in [56Ar1] for static public key validation includes obtaining the 
assurance that the trusted third party has generated the key pair, whereas for ephemeral 
public key validation, one of the allowed methods includes either full or partial public key 
validation using a trusted third party. [56Ar3] discontinued these two methods that relied on 
a trusted third party for obtaining assurance. For the actual process of performing public key 
validation [56Ar1] included full/partial key validation routines for ECC and only full key 
validation routine for FFC. The [56Ar3] retains those routines and also introduces an FFC 
partial public-key validation routine to be used for ephemeral keys generated using safe-
prime groups only. Please note that for the public-key validation routines that are consistent 
between in [56Ar1] and [56Ar3], the required algorithm testing performed as part of a FIPS 
validation is much more stringent for [56Ar3] (using the new ACVP tool) than the testing 
performed for [56Ar1] (using the CAVS tool) in the past. The CAVS tool was retired in June 
2020. 
The next step in the key agreement process is to compute the shared secret, which is a 
secret value computed using a key-establishment scheme and is known by both 
participants. [56Ar3] includes the same type of DLC primitive allowed to be used as that of 
[56Ar1] namely FFC DH, ECC CDH, FFC MQV and ECC MQV. However, the procedure for 
calculating these primitives in [56Ar3] includes additional checks. Specifically, the 
calculation of FFC DH and FFC MQV primitives require an additional step to verify that the 
generated shared secret is greater than or equal to ‘1’ and not equal to ‘(p-1)’ where ‘p’ is 
part of the provided input FFC domain parameter. Additionally, all the four DLC primitive 
calculation procedures, include two additional steps not present in [56Ar1]. First, explicit 
steps for the destruction of all intermediate calculation values just before exiting from the 
routine after successful generation of the shared secret and in an event when an error is 
encountered. Second, instructions have been added for converting the shared secret value 
from ‘integer to byte string’ for FFC and from ‘field-element to byte string’ for ECC before 
outputting the shared secret value. [56Ar3] also includes a requirement that the shared 
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secret shall be used only by an approved key-derivation method, which is described in the 
next paragraph.   
Next, we will take a look at the Key Derivation process that includes deriving key material 
using a shared secret. [56Ar1] included the Concatenation based KDF and its variant called 
the ASN.1 key derivation function. [56Ar3] references a stand-alone document [SP800-56C] 
for all the approved key derivation functions, which includes one-step and two-step KDFs as 
well as the application-specific KDFs listed in [SP800-135]. Please note that in order to use 
the [56Ar3] compliant key agreement in the FIPS-approved mode, the recently updated 
[140-2 IG] D.8 scenario X1 requires implementation of a self-test to cover the key derivation 
function in addition to the shared secret computation. This self-test requirement is different 
from the one required to claim compliance to [56Ar1]. Because in that case, the use of [800-
56C] or [SP800-135] KDFs was considered as a non-approved but allowed key agreement 
method per scenario 3 of [140-2 IG] D.8, and there was no requirement to perform separate 
self-test on the KDFs per [140-2 IG] 9.6 as long as the underlying algorithms were tested. 
The last step in the key agreement process is the Key Confirmation (KC) which refers to 
actions taken to provide assurance to one party (the key-confirmation recipient) that 
another party (the key-confirmation provider) possesses the correct secret keying material 
and/or the shared secret from which that keying material is derived. Key confirmation is 
considered successful if the ‘MacTag’ value computed by the key-confirmation recipient 
matches the ‘MacTag’ value that the recipient received from the key-confirmation provider. 
The calculation of a ‘MacTag’ value is performed by applying an approved MAC algorithm on 
the inputs ‘MacKey’ (which is a symmetric key derived using the shared secret that was 
computed by each party during the key-agreement) and certain context-specific ‘MacData’. 
The [56Ar3] includes an additional approved hash function, SHA-3 as specified in [FIPS 202] 
and an additional approved MAC function, KMAC as specified in [SP800-185]. [56Ar3] 
requires the minimum MacTag length to be 64 bits. Additionally, for the MacKey length used 
by the HMAC and KMAC algorithms, [56Ar3] includes an upper bound of 512 bits and a lower 
bound equal to the supported security strength of the MAC algorithm used. [56Ar3] also 
included specific instructions to be followed when the key confirmation fails such as 
destruction of the derived key material by each participant and destruction of the key-
agreement transaction. As per [140-2 IG] D.8 the testing of key confirmation step is only 
required if applicable i.e. if the module implements it. There is no self-test requirement for 
the key confirmation functionality.  
In summary, here are the requirements to meet the [56Ar3] compliance under scenario X1 
of IG D.8. 
   
IG D.8 
Scenario 

Implementation Requirements from 
[56Ar3] 

Testing Needed 

X1 (1) KAS-
SSC 
Modules only 
implementing 
DH/ECDH 
shared secret 
computation 

- Shared secret computation per one of the 
schemes listed in section 6 and primitives in 
section 5.7.  

- Domain parameter selection/generation in 
section 5.5.1 and management per section 
5.5.3.  

- Key generation (KeyGen) per section 5.6.1 and 
management per section 5.6.3 

- Required assurances per section 5.5.2 and 
5.6.2 

- Use of approved DRBG per section 5.3 and 
Nonce requirement in section 5.4 (if applicable) 

- CAVP certificate for SSC 
and KeyGen, DRBG (if 
applicable) 

- Known Answer test (KAT) 
for SSC 

- Pairwise-consistency Test 
for KeyGen 

X1 (2) KAS 
Modules 
implementing 
DH/ECDH Key 
agreement 

- All above requirements 
- KDF compliant to either SP800-56C Rev1 or 2 

OR one of the KDFs listed in [140-2 IG] G.20 
which includes SP 800-135 and TLS 1.3 KDF. 

- KC per section 5.9, if supported by the module. 

- CAVP certificate for 
entire Key agreement or 
separate certs for SSC, 
KDF, SHA, HMAC, KC (if 
applicable). 



 

atsec information security corporation | http://www.atsec.com/ | info@atsec.com 5 of 5 

- Use of approved Hash per section 5.1and 
approved MAC per section 5.2 (if applicable) 

- KAT for entire Key 
agreement or separate 
KATs for SSC, KDF. No 
KAT for KC. 

- CAVP certificate and 
Pairwise-consistency Test 
for KeyGen 
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